
Pro: Super Fast For Reads

Con: Lots of space, slow to update

Idea 1: Build separate "clustered" indexes for each attribute of interest

Pro: Super space-efficient

Given an index with attributes A1, A2, ... AN:

AK can have any range predicate on it (<, >, ≤, ≥, BETWEEN, ...)

A1 to AK-1 can only have equality predicates

Can (easily) support any query of the form (Ci are constants): A1 = C1 AND A2 = C2 AND ... AND AK < CK (for any 
K <= N)

Con: Doesn't support every type of query

Adjustment: R-Like Trees (maybe will discuss later on in the term)

Idea 2: Hierarchical indexes - Organize according to 2+ attributes 

Pro: Not as much space (particularly for large records), faster updates

Con: Slower (need 2 rounds of access per record... potentially out of order)

Limitation: Need enough memory to keep the keys in memory

Adjustment: Load all keys into memory from the second index, sort, then, "scan" over primary index

Idea 3: Build a "secondary" index for each attribute of interest

Supporting Multiple Attributes

Index/sort holding area separately, periodically merge with overall dataset.

Limitation: Lots and lots of copies per record (data "locked" while updating)

Idea 1: Create a separate "Holding Area" for new records

Supporting Updates

Recap

Allow data (and index) pages to not be full

Drop the requirement that data be in a contiguous region

Ideas:

Too much space reserved: Structure ends up being too tall

Too little space reserved... then what?

How much space to reserve?

Borrow/Lend records to/from other pages at the same level

Merge two pages together

What to do when a page “fills up” or “empties out”?

Questions

Idea 3: Leave some "wiggle room" in pages.

B+Trees



Create a new level / flatten a level

(error in previous notes... depth could still double)

Recur higher if necessary

When page drops below 50% fill, merge with adjacent page

Recur higher if necessary

When page exceeds 100% fill, split into 2 pages

When root drops to 1 pointer, reduce depth by 1

When root exceeds capacity, increase depth by 1

Adjustment: Borrow/Loan records/[key+pointer]s from/to adjacent pages

What if we can't merge with adjacent records?

Observation: Lower bound of 50% fill = Max 2x Depth

Every insert triggers a split

Every delete triggers a merge

Alternating Insertions / Deletions occuring on a 50%/100% boundary:

Doesn't happen very often...

Borrow/Loan help prevent this

Other ideas: Background task to continuously rebalance tree away from dangerous split/merge thresholds

Worst case behavior


